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1. Introduction

String theory in background fields, especially Ramond-Ramond backgrounds, is one of the

main themes in the field. It has become clear that in order to gain a better understanding of

many phenomena of recent interest we cannot avoid studying RR flux in the stringy regime.

For more than ten years, Berkovits and collaborators have been developing a series of

super-Poincaré covariant formalisms for the superstring. In two [1], four [2], and six [3, 4]

dimensions the hybrid formalism is obtained from a field redefinition of the RNS super-

string and has an enhanced symmetry algebra on the worldsheet, namely N = 4, ĉ = 2

superconformal symmetry. Although they share a common structure, these algebras have

different expressions in terms of the fundamental fields in each dimension and all of them

have chiral bosons as fundamental worldsheet fields. It is natural to ask whether there is

a general principle behind these formulations other than the underlying relation with the

RNS superstring.

The minimal1 pure spinor formalism [6] holds a special place among all these for-

malisms; it has no superconformal symmetry and no scalar ghosts. Instead, it has a set

bosonic ghosts in the spinor representation of the Lorenz group satisfying the pure spinor

1Here we are using the nomenclature introduced in [5].
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constraint. Similarly, in the covariant approach [4] for the six-dimensional hybrid formal-

ism one is forced2 to introduce a set of unconstrained spinor ghosts and a BRST charge

Q =
∮

uαDα where Dα is the projective superspace derivative. These new ghosts and

BRST charge have nothing to do with the underlying RNS formalism and are required

to have manifest supersymmetry in d = 6. In this case the bosonic spinor ghosts do not

have to satisfy any constraint since the projective superspace derivative commutes with

itself. (If one tries to increase the number of supersymmetries again one finds that it is not

possible to construct a set of commuting supersymmetric derivatives, and thus the pure

spinor constraint is necessary.) Nevertheless these new ghosts interact with the original

variables and must appear in the vertex operators. We note that this case straddles the

usual hybrid formalism and the pure spinor superstring. It would be very interesting to

find a deeper relation between them, possibly through the superconformal extension of the

minimal pure spinor [5].

Although supersymmetry is one of the main ingredients in string theory, superspace

techniques have historically always played a peripheral role. The first reason is that until

recently there was no quantizable formalism for the superstring with all supersymmetries

manifest.3 The second reason is that many interesting phenomena in string theory (es-

pecially the construction of models which resemble the observed particle physics) appear

after breaking some supersymmetry. For example, ten-dimensional Type I superspace has

encoded within itself the N = 1 four-dimensional superspace but from the ten-dimensional

point of view it is difficult to see how holomorphicity and non-renormalization theorems

appear. This has become clear in superstring field theory [9, 10] where chiral and anti-chiral

F -terms appear, but the procedure is only possible after breaking some manifest Lorentz

symmetry. Finally, one can argue that the usefulness of superspace in higher dimensions

is restricted by our lack of understanding of its off-shell structure.

Breaking supersymmetry in higher-dimensional theories is usually done in components

and the superspace, if it is introduced at all, only appears in the very beginning and end of

the analysis. Furthermore, the Grassmann coordinates related to higher supersymmetries

are simply set to zero by hand. In a supersymmetric covariant formalism it is not consistent

to do this since the superspace coordinates are part of the conformal field theory describing

the superstring; they have to satisfy consistency conditions like vanishing of central charge

and are essential for the worldsheet symmetries. In order to study compactifications of

covariant formalisms we need a method to dimensionally reduce and break supersymmetry

keeping all of the original superspace coordinates.4 In this paper we take a small step in

this direction by studying the standard four-dimensional hybrid superstring in backgrounds

2This procedure was described in footnotes in [6].
3In two interesting papers Lee and Siegel [7, 8] introduced a new formalism for the superstring based

on the usual GS formalism but with a consistent BRST charge built on an infinite pyramid of ghosts in

addition to the usual (b, c) system of the bosonic string. Scattering amplitudes are computed using very

simple rules and its application to other problems seems promising.
4The inverse problem, i.e. the use of standard four-dimensional N = 1 superspace to describe higher-

dimensional theories and those with more supersymmetry, has been widely applied in the literature. For a

relatively recent discussion with applications to phenomenology see [11].
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with reduced symmetry such as Type IIA on a G2 holonomy manifold and with Ramond-

Ramond flux in the internal space.

The hybrid formalism has been used previously to study strings in RR backgrounds,

for example, in the case of AdS3 × S3 [12], AdS2 × S2 [13], the C-deformation [14] and

noncommutative superspace [15]. In all of these examples the RR flux considered was in

the uncompactified sector of space-time, with no contributions coming from the internal

manifold. The relation of internal RR fluxes with auxiliary fields in the four-dimensional

supersymmetric multiplets first appeared in [16] and was discussed further in [17] and [18].

Compactifications including fluxes have attracted a lot of attention in recent years due to

their applications to the problem of moduli stabilization (see [19] and references therein).

We hope that the superspace reduction introduced in this paper can be extended to

the higher-dimensional versions of the hybrid formalism and possibly to the (minimal)

pure spinor formalism. This type of superspace reduction could also be useful for finding

the relation with the pure spinor superstring; there is the possibility that the pure spinor

formalism is the generating formalism for all covariant formalisms in lower dimensions.

This, in turn, might help to better understand the new superconformal description of [5].

Another application of the present work is to to study G2 holonomy compactifications,

at least in the case where the G2 is of the form (CY3 × S1)/Z2. If we start with M-theory

we have a four-dimensional effective field theory with N = 1 supersymmetry and with

the appropriate manifold we can obtain N = 1 super YM [20] . Since we do not have

a (covariant) microscopic description of M-theory, we can further compactify the theory

on a circle and use the duality with Type IIA to address stringy questions. Yet another

application is the conjectured relation between Hitchin functionals in seven dimensions and

topological strings on Calabi-Yau manifolds [21] . Since, in the hybrid formalism, there

is a well-defined way to compute general supersymmetric amplitudes, it is possible to use

the covariant description of the present paper to calculate amplitudes in backgrounds of

the form (CY3 × S1)/Z2 and see what terms topological amplitudes are computing in the

three-dimensional effective action.

This paper is organized as follows. In the next section we will review the four-

dimensional hybrid formalism, stressing features which are going to be useful in the sub-

sequent sections and have not heretofore appeared in the literature, such as alternative

descriptions of vertex operators and amplitudes in the compactification-dependent sector.

The three-dimensional N = 4, 2 and 1 superspace will be described in section 3. A conve-

nient way to reduce the number of supersymmetries without leaving the original superspace

will be introduced. Multiplets with various amounts of supersymmetry will be described.

We then show how the hybrid superstring in four dimensions can be used to describe string

theories in lower dimensions without changing the number of fundamental fields in the

formalism. We then apply these methods to give a supersymmetric description of Type

IIA on (CY3 × S1)/Z2. In section 4, we discuss effects of Ramond-Ramond fields in four

dimensions (which is easily adapted to the case of three dimensions using the results of

section 3). In the concluding section we summarize the work and comment on future appli-

cations to problems of current interest. Finally, we include for completeness an appendix

with the hybrid formalism reduced on S1 in the conventions of section 3.
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2. Hybrid formalism in d = 4

In this section we review basic aspects of the hybrid formalism in d = 4 [2]. Besides setting

up definitions and notations, we comment on aspects of the formalism which have not

appeared previously in the literature such as supersymmetric amplitudes in the compacti-

fication sector.

2.1 Action and symmetries

The original formulation of the hybrid superstring is as a field redefinition of the RNS vari-

ables compactified on a Calabi-Yau background [2]. In its final form there is a complete

decoupling between the four-dimensional flat space and the Calabi-Yau background. The

fundamental variables of the d = 4 (closed string) hybrid formalism are the N = 2 super-

space coordinates (x, θL, θL, θR, θR), the conjugate momenta for the fermionic coordinates

(pL, pL, pR, pR) and two chiral bosons (ρL, ρR).

The action is

Shybrid =

∫
d2z[∂Lxm∂Rxm + pLα∂Rθα

L + pLα̇∂Rθ
α̇

L + pRα∂Lθα
R + pRα̇∂Lθ

α̇

R] + Schiral, (2.1)

where Schiral is the action for the chiral bosons. The fundamental OPE’s are:

xm(z)xn(w) → ηmnln|z − w|2, (2.2)

pLα(y)θβ
L(z) → δβ

α

y − z
, pLα̇(y)θ

β̇

L(z) → δβ̇
α̇

y − z
,

pRα(y)θβ
R(z) → δβ

α

y − z
, pRα̇(y)θ

β̇

R(z) → δβ̇
α̇

y − z
,

ρL(z)ρL(w) → −ln(z − w), ρR(z)ρR(w) → −ln(z − w).

The last line shows that the chiral bosons are time-like and hence cannot be fermionized.

Furthermore, they are space-time scalars.

The action (2.1) is supersymmetric, and the corresponding supercharges are

qLα =

∮
dz[p

Lα − i

2
θ

α̇

L∂Lxαα̇ − 1

8
(θL)2∂LθLα], (2.3)

qLα̇ =

∮
dz[pLα̇ − i

2
θα

L∂Lxαα̇ − 1

8
(θL)2∂Lθ

Lα̇],

qRα =

∮
dz[pRα − i

2
θ

α̇

R∂Rxαα̇ − 1

8
(θR)2∂RθRα],

qRα̇ =

∮
dz[pRα̇ − i

2
θα

R∂Rxαα̇ − 1

8
(θR)2∂Rθ

Rα̇]. (2.4)

There is a set of operators which commutes with the charges (2.3) (and with their

right-moving counterparts):

dLα = pLα +
i

2
θ

α̇

L∂xαα̇ − 1

4
(θL)2∂θLα +

1

8
θLα∂(θL)2, (2.5)

dLα̇ = pLα̇ +
i

2
θα
L∂xαα̇ − 1

4
(θL)2∂θLα̇ +

1

8
θLα̇∂(θL)2,

Πm
L = ∂Lxm − i

2
σm

αα̇(θα
L∂Lθ

α̇

L + θ
α̇

L∂Lθα
L),
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and similarly for the right moving sector. Here xαα̇ = xmσm
αα̇. These operators realize the

following algebra

dLα(y)dLα̇(z) → i
ΠLαα̇

y − z
, dLα(y)dLβ(z) → regular, dLα̇(y)d

Lβ̇
(z) → regular,

dLα(y)∂Lθβ
L(z) → δβ

α

(y − z)2
, dLα̇(y)∂Lθ

β̇

L(z) → δβ̇
α̇

(y − z)2
, (2.6)

dLα(y)Πm
L (z) → −i

σm
αα̇∂Lθ

α̇

L

y − z
, dLα̇(y)Πm

L (z) → −i
σm

αα̇∂Lθα
L

y − z
,

Πm
L (z)Πn

L(z) → − ηmn

(y − z)2
.

Although it is not manifest, the action (2.1) in invariant under a non-linear N = (2, 2)

superconformal transformation which is generated by

TL = −1

2
∂Lxm∂Lxm − pLα∂Lθα

L − pLα̇∂Lθ
α̇

L − 1

2
∂LρL∂LρL, (2.7)

G+
L = eρL(dL)2, G−

L = e−ρL(dL)2, JL = −∂LρL,

again, together with the right-moving counterpart.

2.2 Coupling to c = 9, N = 2 CFTs

We can couple this c = −3, N = 2 CFT to any N = 2 CFT. Consistency of an N = 2

superstring theory requires that the total central charge be c = 6. This is the familiar

condition for the standard critical N = 2 string, after the introduction of the ghost sector.

In the hybrid formalism this condition is better seen as a requirement to admit an N = 4

topological description [3] in which no additional superconformal ghosts are needed. The

N = 4 formalism is suitable for defining scattering amplitudes and a string field theory

action in the case of open strings. We will introduce some of its properties when needed.

There is the possibility of coupling the hybrid variables to a more supersymmetric CFT.

This means that there are some space-time supersymmetries that are not linearly realized

in the fundamental variables, and the hybrid description is not the most economical. The

trivial example is the six-dimensional torus. Nevertheless, this example is very useful to

compute exact answers in the CFT.

Given a c = 9, N = 2 CFT with left-moving generators (TL,G+
L ,G−

L ,JL) a consistent

string theory has action

S = Shybrid + Sc=9,

and c = 6, N = 2 generators

TL = −1

2
∂Lxm∂Lxm − pLα∂Lθα

L − pLα̇∂Lθ
α̇

L − 1

2
∂LρL∂LρL + TL, (2.8)

G+
L = eρL(dL)2 + G+

L , G−
L = e−ρL(dL)2 + G−

L ,

JL = −∂LρL + JL.

– 5 –
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The right-moving sector of the algebra is determined by the choice of Type IIA or Type

IIB superstring. A consistent convention for the present work is the following5

Type IIA : G+
R = eρR(dR)2 + G−

R , G−
R = e−ρR(dR)2 + G+

R , JR = −∂RρR − JR (2.9)

Type IIB : G+
R = eρR(dR)2 + G−

R , G−
R = e−ρR(dR)2 + G+

R , JR = −∂RρR − JR (2.10)

The change in the energy-momentum tensor is given simply by switching L → R in

derivatives and fields.

Since now the central charge is c = 6, this system defines a critical N = 2 superstring.

One could now add superconformal ghosts and perform standard BRST quantization to

define physical states and amplitudes but we will show that this is not necessary.

In the superconformal field theory of a Calabi-Yau 3-fold background we have, in

addition to the usual superconformal algebra, a second superconformal algebra that does

not commute with the first. We will call these generators

t̃L =
1

6
J 2

L, g̃+
L =

1√
3
Ω+

L = eHL , g̃−L =
1√
3
Ω−

L =
1√
3
e−HL , j̃ =

1

3
JL, (2.11)

where ∂LHL = JL and Ω+
L and Ω−

L are holomorphic chiral and anti-chiral fields with

charge 3 and −3 of the original superconformal algebra. They can be written in terms of

the holomorphic ΩIJK and anti-holomorphic ΩIJK 3-form on the Calabi-Yau respectively.

The same applies to the right-moving sector and together these operators form an important

part of the N = 4 superconformal algebra.

To construct the extended superconformal algebra [3] , we note that

JL = −∂LρL + JL, J++
L = e−ρLΩ+

L , J−−
L = e+ρLΩ−

L , (2.12)

form an SU(2) current algebra. With these operators we can generate two new supercon-

formal operators

G̃+
L = J++

L (G−
L ) = Ω+

Le−2ρL(dL)2 + e−ρLΩ+
L (G−

L ), (2.13)

G̃−
L = J−−

L (G+
L ) = Ω−

Le2ρL(dL)2 + eρLΩ−
L (G+

L ),

The action of (J++
L , J−−

L ) on all other supercharges vanishes. A similar construction

works in the right moving sector, but one should mind the conventions expressed in (2.9)

and (2.10). The constraints {TL,R, G±
L,R, G̃±

L,R, JL,R, J±±
L,R} generate the required N = 4

algebra.

2.3 Physical states

We define physical states as primary fields of the algebra (2.8). Due to the large worldsheet

symmetry algebra, vertex operators can be written in many equivalent ways. For every

physical state, there is an infinite number of vertex operators representing it [3]. This

large degeneracy is reminiscent of picture changing in the RNS formalism. Depending on

5This differs from the conventions in [22].
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the application, some choices have proven to be more useful than others. We are going to

introduce some of them, explaining when each choice is suitable.

Massless vertex operators are constructed using neutral operators of conformal dimen-

sion zero times a function of the zero-modes of (xm, θα
L, θ

α̇

L, θα̇
R, θ

α̇

R). In the simplest case the

operator of conformal dimension zero is the identity operator 1, and the vertex operator is

just V = U(xm, θα
L, θ

α̇

L, θα̇
R, θ

α̇

R) × 1. V is a primary field of conformal weight zero if

(TL)0V = (G+
L ) 1

2

V = (G−
L ) 1

2

V = 0,

together with the right-moving counterpart. Here OnA means the pole of order hO + n in

the OPE of O and A where hO is the conformal weight of O. Using the algebra (2.8) we

have

∇2
LU = ∇2

LU = ∇2
RU = ∇2

RU = 4U = 0, (2.14)

where the ∇ are the superspace covariant derivatives. These equations imply polarization

and mass shell conditions for the superfield U and it can be shown that U is the prepotential

for N = 2 supergravity plus a tensor multiplet in a supersymmetric gauge. It is a general

feature of the hybrid formalism that prepotentials (vs. potential or strength superfields)

appear in the unintegrated vertex operators.

In principle one could also consider U to be a real function of the Calabi-Yau coor-

dinates (yI , yI). We will require that this function is smooth so that it does not depend

on the cohomology of the CY3. We will see that if there are NSNS and RR fluxes in the

Calabi-Yau, U will have such non-trivial (yI , yI) dependence.

The other basic primary fields for Type II strings come from chiral and twisted-chiral

operators in the Calabi-Yau CFT [23]. These operators are classified by their charges

(qL, qR) under (JL,JR). Since they are (anti-)chiral their conformal weight is determined

by their charge as h = 1
2 |q|. Operators of charge (−1,−1) are annihilated by both (G−

L ,G−
R )

and (Ω−
L ,Ω−

R) and the ones with charge (−1, 1) are annihilated by (G−
L ,G+

R ) and (Ω−
L ,Ω+

R).

Together with their complex conjugates, these operators describe the Kähler and complex

compactification moduli respectively. Let Φa and Ψi be the operators with charges (−1,−1)

and (−1, 1) respectively. Then the vertex operators are given by

Ξ = MaΦ
a, Σ = HiΨ

i, (2.15)

where a runs from 1 to h1,1 (the number of Kähler parameters), i runs from 1 to h2,1 (the

number of complex structure deformations), and Ma and Hi are space-time superfields.

Since Ξ and Σ are charged, appropriate physical state conditions are

(G+
L )− 1

2

Ξ = (G−
R)− 1

2

Ξ = (G−
L ) 1

2

Ξ = (G+
R) 1

2

Ξ = 0, (2.16)

(G+
L )− 1

2

Σ = (G+
R)− 1

2

Σ = (G−
L ) 1

2

Σ = (G−
R) 1

2

Σ = 0. (2.17)

Using (2.8) and (2.9) these conditions for Type IIA imply that Ma is chiral superfield

and it is physical when ∇2
LMa = ∇2

RMa = 0. It therefore describes an N = 2 vector

superfield. Similarly, Hi is a twisted-chiral superfield which is physical when ∇2
LHi =

∇2
RHi = 0, describing an N = 2 tensor multiplet. In the case of Type IIB we use (2.10),

– 7 –
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and the roles of Ma and Hi are reversed. The form (2.15) is convenient for describing

deformations of the hybrid string action. This is the usual description of the massless

physical states of the theory. There are, however, alternative descriptions. We will discuss

this for the Type IIA case only as it can be easily modified for Type IIB.

First we note that Ξ and Σ can also be described by uncharged operators. This

comes from the fact that eρLd2
L and e−ρLd

2
L together with their right moving (keeping in

mind (2.9)) counterparts are invertable, that is

(eρLd2
L)− 1

2

(e−ρLθ2
L) = 1, (e−ρLd

2
L)− 1

2

(eρLθ
2
L) = 1.

Using left- and right-moving combinations of e−ρLθ2
L and eρLθ

2
L it is therefore possible to

write

ξ = (eρLθ
2
L)(e−ρRθ

2
R)Ξ = θ

2
Lθ

2
RMae

ρL−ρRΦa, (2.18)

σ = (eρLθ
2
L)(eρRθ2

R)Σ = θ
2
Lθ2

RHie
ρL+ρRΨi.

Because θ appears explicitly in the equations above, ξ and σ do not look supersymmetric.

Remembering, however, that Ma and Hi are chiral and twisted chiral allows us to write

Ma = ∇2
L∇

2
R(θ

2
Lθ

2
RMa) and Hi = ∇2

L∇2
R(θ

2
Lθ2

RHi) or in a more general gauge, Ma =

∇2
L∇

2
Rma and Hi = ∇2

L∇2
Rhi, with complex unconstrained ma and hi. The final result is

that the uncharged operators can be written as

ξ = mae
ρL−ρRΦa, σ = hie

ρL+ρRΨi. (2.19)

From this one can see that ma and hi play the role of prepotentials for Ma and Hi, in

analogy with the vertex operator for the supergravity sector. Using (2.8) and (2.9) one can

show that these operators are uncharged with respect to the full superconformal algebra.

The uncharged operators are essential for computing scattering amplitudes.

The extended worldsheet superconformal symmetry also allows different descriptions

of vertex operators. Using the SU(2) current algebra one can transform, for example, a

chiral operator of the original superconformal algebra (2.8) to an anti-chiral field of (2.13).

As will be shown below, it is useful to have operators with positive charge in the left-moving

sector and negative charge in the right-moving one. The vertex operators in (2.15) do not

satisfy this requirement. Applying J++
L on Ξ we have

(J++
L )0(Ξ) = Mae

−ρLΩ+
L (Φa),

where Ω+
L(Φa) is twisted-chiral primary field in the Calabi-Yau CFT with charge (2,−1)

under (JL,JR). The same procedure is applied to Σ:

(J++
L )0(J

++
R )0Σ = Hie

−ρL−ρRΩ+
L (Ω−

R(Ψi)),

where Ω+
L (Ω−

R(Ψi)) has charge (2,−2). All operators generated from the actions of Ω±
L,M

on the original (−1,−1), (−1, 1), (1, 1) and (1,−1) rings can be organized in four different

Hodge diamonds. The one with the convenient charges is the one shown below:

– 8 –
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Ω+
LΩ−

R

0 0

0 Ω+
L (Ω−

R(Ψi)) 0

Ω+
L Ω+

L (Φa) Ω−
R(Φ

a
) Ω−

R

0 Ψ
i

0

0 0

1

Table 1: The Hodge diamond of Calabi-Yau threefold CFT operators with positive left-moving

charge and negative right-moving charge.

2.4 Deformations of the action

Deformations of the action, i.e. integrated vertex operators, should have conformal weight

(1, 1) and preserve the N = 2 superconformal algebra. Integrated vertex operators are also

used to compute scattering amplitudes with more than three external states. Starting with

U the only operator that satisfies these conditions is

δSU =

∫
d2z|G+

− 1

2

G−

− 1

2

|2U (2.20)

where | · |2 means left- right-moving product. The explicit form of this vertex operator can

be used to derive the full action in a general curved background [22]. Compactification-

dependent states can also be used to deform the action. These are important for the

description of general backgrounds with fluxes and warping. In the case of Ma, the vertex

operator takes the form

δSMa =

∫
d2z[(G+

L )− 1

2

(G−
R)− 1

2

Ξ + c.c.] =

∫
d2z[|G+

− 1

2

G−

− 1

2

|2ξ + c.c.]

=

∫
d2z[MaG+

L (G+
R (Φa)) + eρL−ρRdα

Ldβ
R(∇Lα∇RβMa)Φ

a + (2.21)

eρLdα
L(∇LαMa)G+

R (Φa) + e−ρRdα
R(∇RαMa)G+

L (Φa) + c.c.],

where Ma = ∇2
R∇

2
Lma is the chiral field strength. If Ma is a constant superfield only

the first term survives which corresponds to the usual result in the RNS formalism. The

other terms are required in the supersymmetric formalism to ensure full superconformal

invariance. Deformations corresponding to Hi can be computed similarly:

δSHi
=

∫
d2z[(G+

L )− 1

2

(G+
R)− 1

2

Σ + c.c.] =

∫
d2z[|G+

− 1

2

G−

− 1

2

|2σ + c.c.]

=

∫
d2z[HiG+

L (G−
R (Ψi)) + eρL+ρRdα

Ld
β̇

R(∇Lα∇Rβ̇
Hi)Ψ

i (2.22)

+eρLdα
L(∇LαHi)G−

R (Ψi) + eρRd
α̇

R(∇Rα̇Hi)G+
L (Ψi) + c.c.]

2.5 Supersymmetric amplitudes

Supersymmetric amplitudes can be computed in a straightforward way using the rules of

the hybrid formalism [24, 25] in four dimensions. Amplitudes are calculated by twisting the
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superconformal algebra. This has the effect of shifting the conformal weights (hL, hR) →
(hL − qL

2 , hR − qR

2 ) so that all operators defined in the zero-mode measure have conformal

weight zero, as they should. The twisting is also responsible for a charge anomaly of 2 in

the left- and right-moving sector, which is cancelled by the measure. Due to the charge

anomaly in the algebra of (2.8), we will have to use all of the operators defined above to

obtain non-vanishing amplitudes. The first step is to define the measure over zero-modes.

To this end it should be observed that the integral of the product of the holomorphic and

anti-holomorphic forms over the Calabi-Yau is proportional to the volume

i

∫

CY3

Ω ∧ Ω =
4

3
Vol(CY3).

As was shown above, these forms are represented by Ω+
L and Ω−

R. In the internal CFT we

therefore define

〈Ω+
LΩ−

R〉CY3
= 1 (2.23)

In the non-compact sector momentum conservation is ensured by integrating over

space-time. In addition, we have to remove the zero-modes of the fermionic coordinates θ;

their conjugate momenta p have no zero modes on the sphere. The final ingredient is the

measure for the chiral bosons (ρL, ρR). The final form of measure is6

〈θ2
Rθ

2
Lθ2

Rθ
2
Re−ρL−ρLΩ+

LΩ−
R〉 = 1. (2.24)

The first non-vanishing amplitude is the three point function and due to SL(2, R)

invariance, the three vertex operators should be unintegrated. The charge anomaly in

the N = 2 twisted algebra factorizes between space-time and Calabi-Yau sectors; a −1

contribution should come from the chiral bosons and +3 from the (anti-)holomorphic forms.

This requirement narrows down the possible choices.

As a first example, let us compute the three-point function in the Type IIA string for

the H i moduli. Two charged Σ and one uncharged vertex operator σ = hie
−ρL−ρRΨ

i
will

be needed. The chiral ring structure of operators in table 1 is essential in the computation.

It is not hard to see that the correlation between three Ψs is [23]

Ψ
i × Ψ

j × Ψ
k

= Ω+
LΩ−

R Cijk,

where Cijk are the h2,1 intersection numbers. The final answer is

〈Σ1Σ2σ3〉 =

∫
d4xd2θLd2θLd2θRd2θRH iHjhkCijk,

where the integration over θ comes from the zero-mode measure. Since H’s are twisted-

chiral and hk is unconstrained, we can further perform integration over d2θLd2θR to get

〈Σ1Σ2σ3〉 =

∫
d4xd2θLd2θRH iHjHkCijk,

6Note that the measure is of D-term type. Since some superconformal generators have trivial cohomology

it is also possible to write chiral and twisted-chiral F-term measures [9, 10].

– 10 –



J
H
E
P
0
1
(
2
0
0
7
)
0
9
9

which is the expected result. Similarly, it is possible to compute the amplitude for Hi

using two (J++
L )0(J

++
R )0Σ = Hie

−ρL−ρRΩ+
L(Ω−

R(Ψi)) vertex operators and one σ. The

calculation is slightly more involved due to the correlation between the chiral bosons and

CY3 operators. A shorter path, which gives the same answer, is to just take the complex

conjugate of the previous amplitude

〈[(J++
L )0(J

++
R )0Σ1][(J

++
L )0(J

++
R )0Σ2]σ3〉 =

∫
d4xd2θLd2θRHiHjHkCijk.

Now let us compute amplitudes involving Ma. We need two operators of the type

(J++
L )0(Ξ) = Mae

−ρLΩ+
L (Φa) and one ξ. This time we have

e−ρLΩ+
L (Φa) × e−ρLΩ+

L (Φb) × eρL−ρRΦc = e−ρL−ρRΩ+
LΩ−

R Kabc,

where Kabc are h1,1 intersection numbers. Note that the factors of eρL and e−ρL are needed

to remove poles and zeros in the correlators of operators in the Hodge diamond. The

amplitude becomes

〈[(J++
L )0Ξ1][(J

++
L )0Ξ2]ξ3〉 =

∫
d4xd2θLd2θRMaMbMcKabc.

The analogous formula for anti-chiral fields is

〈[(J++
R )0Ξ1][(J

++
R )0Ξ2]ξ3〉 =

∫
d4xd2θLd2θRMaM bM cKabc

.

All other three-point amplitudes involving only moduli states are zero. We now turn to

amplitudes with more than three points. These amplitudes have the general form

〈V1V2v3

n∏

i=4

∫
d2ziUi〉,

where V are charged, unintegrated vertex operators, v is uncharged and the Ui are inte-

grated vertex operators like (2.21). All the operators used in the previous computations

are the only ones with zero conformal weight in the twisted theory. Furthermore, they

saturate the charge anomaly in the correlation functions. These two facts imply that if we

consider higher point amplitudes, only terms like the first one in (2.21) are going to enter

the computation, so in the hybrid formalism the usual non-renormalization theorems [23]

for tree level amplitudes apply. The charge anomaly will also be useful in section 4, when

we compute amplitudes involving Ramond-Ramond flux. Four-point amplitudes can be

calculated similarly, and give the special geometry equations relating the curvature tensor

to the metric and Yukawa couplings (see e.g. the second reference in [23]). Since we are

not going to use this type of amplitude, we will not discuss it further. The problem of

computing one loop amplitudes as in reference [25] for compactification-dependent states

is still open.

3. Dimensional reduction, quotients and G2 holonomy

In this section we discuss all multiplets defined above and introduce the superspace reduc-

tion that relates them to theories with less supersymmetry. We then turn to the description

of the Type IIA string on a (CY3 × S1)/Z2 quotient with G2 holonomy.
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3.1 The superspace Nd =2 4 and its reductions

The Nd = 24 chiral M and twisted-chiral H field strengths are defined by the constraints

0 = ∇Lα̇M = ∇Rα̇M , 0 = ∇Lα̇H = ∇RαH

implying that they can be written in terms of unconstrained complex prepotentials m and h

M = ∇2
L∇

2
Rm , H = ∇2

L∇2
Rh

In addition, the reality conditions

0 = ∇2
LM −∇2

RM , 0 = ∇2
LH −∇2

RH

are imposed, resulting in the component expressions

M = ϕ + θα
Lψα + θα

Rλα + θ2
LF + θ2

RF + θα
Lθβ

R (εαβD + fαβ) + . . .

H = ` + θα
Lηα + θ

α̇

Rξα̇ + θ2
Ly + θ

2
Ry + θα

Lθ
α̇

R

(
i∂αα̇l + H̃αα̇

)
+ . . .

where the ellipses denote auxiliary terms. The reality conditions are necessary to en-

sure that Fmn = (γmn)αβfαβ + h.c. and H̃m = εmnpqH
npq satisfy the appropriate Bianchi

identities. They also put the theory partially on-shell, an inevitability of non-harmonic su-

perspaces. Fortunately, this shortcoming will not hamper our analysis too much allowing

us to avoid introducing harmonic superspaces in this work.

In what follows, we will make use of the dimensional reduction of this superspace from
Nd = 24 to Nd = 43. We choose to single out y = x2 for this purpose. We then use i(σ2)αα̇

to convert all dotted spinor indices to undotted ones and define (γm)α
β = i(σ2σm)α

β to be

the real three-dimensional Dirac matrices. These matrices are symmetric upon lowering

an index. The superspace coordinates can now be taken to be (xm, y, θα
L, θ

α

L, θα
R, θ

α

R).

{∇Lα,∇Lβ} = 0 , {∇Rα,∇Rβ} = 0

{∇Lα,∇Lβ} = 0 , {∇Rα,∇Rβ} = 0

{∇Lα,∇Lβ} = −2i∂αβ − 2εαβ∂y , {∇Rα,∇Rβ} = −2i∂αβ − 2εαβ∂y

A new feature of Nd = 43 superspace is the involution exchanging θα
L ↔ θ

α

L, θα
R ↔ θ

α

R,

and taking y 7→ −y.7 More useful for our purposes is the combination of this involution with

the usual hermitian conjugation (denoted ) which we will denote by ◦. Note that although

◦ involves the whole superspace, effectively it only acts on components of (twisted-) chiral

superfields since the two involutions of which it is composed together fix θL,R and θL,R.

Having identified a new involution it is natural to consider its eigenspaces. We therefore

introduce new projection operators Re◦ = 1
2(1+◦) and Im◦ = 1

2i
(1−◦) acting on superfields.

Similarly to the ordinary real and imaginary subspaces of complexified superspace, the

7Starting with Type I superspace in ten dimensions and working down, one finds that it is not possible

to define an involution of this type preserving more than an SO(1, 5) Lorentz symmetry. This corresponds

to compactifification on a K3 surface and is a simple way to see why the first special holonomy manifold

occurs in four dimensions.
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◦-real and ◦-imaginary superspaces are half-supersymmetric. In this way, the Nd = 43

representations are reduced to Nd = 23.

Let let X = Re◦N and Y = Im◦N denote the ◦-real and ◦-imaginary parts of a general
Nd = 24 superfield N . Then N = X + iY . Note that X 6= X and similarly for Y so these

fields are not real with respect to the original -conjugation. However, it is easy to see that

under left-moving supersymmetry transformations δLN = (εα
LQLα + εα

LQLα)N ,

δLX = (ε + ε)αL(Q + Q)LαX − (ε − ε)αL(Q − Q)Lα

δLY = (ε + ε)αL(Q + Q)LαY + (ε − ε)αL(Q − Q)LαX

and similarly for the right-moving supersymmetries. The combination (ε + ε)L parame-

terizes a supersymmetry which is realized linearly on X and Y separately while (ε − ε)L
mixes the two. Therefore, X and Y are Nd = 23 superfields. We will henceforth use X

and Y to denote the ◦-real and ◦-imaginary parts of a chiral superfield N = M . Simi-

larly S = Re◦H and T = Im◦H will denote the half-supersymmetric projections of the

twisted-chiral superfield H.

It is easy to show by covariant projection that the Nd = 23 superfields X,S and Y, T

are strengths for a (partially on-shell) vector multiplet and a scalar multiplet respectively.

For example for the field strength components of X and Y we find

∇Lα∇RβX| = (γmn)αβFmn

∇Lα∇RβY | = (γm)αβ (∂yAm − ∂ma) − iεαβD

∇Lα∇RβS| = (γm)αβH̃m − εαβ∂yl

∇Lα∇RβT | = (γm)αβ∂ml + εαβH̃y

where we have retained the ∂y-terms for use in section 4.2 where we will interpret them as

fluxes coupling to space-time defects.8

In the basis defined by θ+
α = (θLα + θRα) and θ−α = (θLα − θRα), N = 1 decompositions

may be represented (up to certain auxiliary fields) as X = Φ(θ+) + θ−αWα(θ+) where Φ

and Wα are the standard Nd = 13 field strengths for a scalar and vector multiplet while

Y = Φ+(θ+)+Φ−(θ−) is the direct sum of two scalar superfields. The analogous statements

hold for S and T in the basis θ+
α = (θLα + θRα), θ−α = (θLα − θLα). In this case, the field

strength Υα analogous to Wα is the d = 3 version of a variant representation of the tensor

multiplet.

Finally, let us comment very briefly on the structure of a real scalar prepotential U .

As mentioned in section 2.3, the gravitational multiplet is represented such a field. As

described in detail in reference [22], it has a gauge invariance δU = ∇2
LΛL + ∇2

LΛL +

8If a higher-dimensional theory is written in a lower-dimensional superspace notation then it is often the

case that the ‘scalar’ field strengths in the extra directions are related by equations of motion to F - and

D-terms. For example, in six-dimensional SYM the D-term of the gauge field V is related to the flux in

the 5- and 6-directions by the equation of motion D = F56 [26, 11] It is therefore possible to turn on these

particular fluxes without breaking supersymmetry if we simultaneously give vevs of the same magnitude to

these auxiliary terms.
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∇2
RΛR + ∇2

RΛR and can be put into the Wess-Zumino gauge

U = (hmn + bmn + l+−ηmn)σm
αα̇σn

ββ̇
θα
Lθ

α̇

Lθβ
Rθ

β̇

R + . . . (3.1)

where the ellipsis denotes higher-dimensional fields which will not enter our considerations.

Upon reduction under ◦, it is easy to check that Re◦U contains hmn, bmn, and hyy and

Im◦U contains hmy, bmy, and l+−. This result will be important when we discuss warping

in section 4.

3.2 G2 structure and Z2 quotient

The formalism developed in section 2 has N = 4 supersymmetry in three dimensions.

There are many ways to obtain a theory with a smaller amount of supersymmetry. Given

an initial setup in which the compactification manifold is of the form CY3×S1, the obvious

way to break half of the supersymmetry is by a Z2 quotient, which is a well-known way

to obtain G2 holonomy manifolds. The resulting spectrum is equivalent to a direct type

IIA reduction on a general G2 holonomy manifold. This example breaks supersymmetry

within left- and right-moving sectors as we discuss presently. A second way to reduce the

amount of supersymmetry breaks between the two sectors by the introduction of some flux.

We demonstrate the effects of such background fluxes in four dimensions in section 4 by

explicit worldsheet computations.

Our starting point is a Calabi-Yau 3-fold CY3 with complex structure J , symplectic

(1, 1)-form ω, and holomorphic volume (3, 0)-form Ω. The Hodge structure is the familiar

one with variable h1,1 and h2,1. Consider a conjugation acting freely on the Calabi-Yau

defined such that J → −J , ω → −ω, and Ω → Ω. We extend this action to the circle with

coordinate y ∈ (−π, π] by the reflection y 7→ −y. Let us denote the combined operation

by σ : CY3 × S1 → CY3 × S1. Although σ fixes y = 0 and y = π on S1, its action

on CY3 is free and therefore the quotient X =
(
CY3 × S1

)
/σ is smooth. The 3-form

Φ = ω ∧ dy + ReΩ, being invariant under the action of σ, descends to X providing it with

a G2-structure [27].

Under the action of σ the cohomology of the Calabi-Yau descends to the following.

Since the space of 2-forms is real, it splits as H1,1 = H1,1
+ ⊕H1,1

− where the H1,1
± eigenspaces

have the indicated eigenvalues. The odd forms are reflected through the vertical of the

Hodge diamond since the involution acts as a conjugation. Therefore, the eigenspaces are

subspaces of the sums H3,0⊕H0,3, spanned by ReΩ and ImΩ, and H2,1⊕H1,2. Quotienting

by σ projects out the odd eigenspaces. The resulting cohomology of X is real and has Betti

numbers b2 = h1,1
+ and b3 = h1,1

− + h2,1 + 1 where the h1,1
− terms in b3 come from wedging

with the 1-form dy on the circle.

We would like to extend this conjugation to the full superspace. Such an extension

must be symmetric in its action on left-moving and right-moving fermionic coordinates.

From the discussion in section 3, the obvious candidate is the ◦-involution. Assuming

this, we are in position to determine the spectrum. We take for definiteness type IIA

on the Calabi-Yau 3-fold. Then, as explained in section 2, the h1,1 Kähler moduli are

parameterized by the scalars in the Nd = 24 vector multiplets Ma while the h2,1 complex
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moduli are embedded in the hypermultiplets Hi. Let us write the relevant vertex operators

as
h1,1∑

a=1

MaΦ
a +

h2,1∑

i=1

HiΨ
i + h.c.

where the Φa generate H1,1 and the Ψi generate H2,1. From the discussion above, we see

that this expression decomposes under the extended conjugation as

h
1,1
+∑

a=1

XaΦ
a
+ +

h
1,1
−∑

a=1

YaΦ
a
− +

h2,1∑

i=1

SiReΨi + h.c.

This result agrees with the standard component analysis [28, 20]. With this construction

on can take a solvable model for the quotient X =
(
CY3 × S1

)
/σ such as [29] and use the

hybrid formalism to compute supersymmetric amplitudes.

4. Internal Ramond-Ramond fluxes and deformations

We will now apply the methods of the hybrid formalism to the problem of internal Ramond-

Ramond fluxes. Computations of superpotentials can be done by calculating scattering

amplitudes with appropriate operators. In [18] Lawrence and McGreevy have given a

detailed discussion of the role of auxiliary fields and their meaning in terms of RR fluxes.

We will use that analysis combined with the hybrid formalism to compute superpotentials

and effects due to torsion and warping.

It has been known since the beginning of the study of supersymmetric theories that

giving vevs to auxiliary fields can be used to break supersymmetry. The connection between

auxiliary fields and internal RR fluxes was made in [30, 16].

If Ma(x, θL, θR) is a constant chiral superfield and there are no fermionic background

or Lorentz breaking terms, we have the simple form

Ma(θL, θR) = φa + θ2
LFa + θ2

RF a + θα
Lθβ

RεαβDa,

where (Fa, F a,Da) are auxiliary fields representing a combination of RR and NSNS

fluxes [18]. For general values of (F,F ,D) supersymmetry is completely broken. There

are two general cases preserving half of the supersymmetry. In the first one a combination

of (θL, θR) is preserved θL + eiγθR where γ is a phase depending on the specific model of

supersymmetry breaking. In this case Ma has the form

Ma = φa + (θL + eiγθR)2Fa. (4.1)

In the second case the right- (or left-)moving supercharges are broken, preserving the other.

Then, Ma takes the form

Ma = φa + θ2
RF a, (4.2)

where Fa is due to NS flux. In the case of Hi, the only combinations involving left- and

right-moving product of θ are vectors in space-time which means that Hi can only be used

to describe NSNS fluxes.

Hi = ψi + θ2
Lyi,
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where the left moving supersymmetry is broken. The physical meaning of all these auxiliary

fields depends on the choice of type IIA or type IIB string as discussed in detail in [18].

It was pointed out in [17, 18] that giving vevs to the auxiliary fields in compactifica-

tion multiplets violates the physical state conditions (2.16) and (2.17) and that a possible

solution to this apparent inconsistency is that the physical state conditions are modified

when this type of flux is turned on. This means that giving vevs to those fields breaks

N = 2 superconformal invariance on the worldsheet. Instead of modifying the physical

state condition we modify the physical state itself by observing that these deformations

cannot be turned on alone. That is, there should be another deformation in the action that

compensates the breaking due to non-zero values in the auxiliary components of Ξ and Σ.

Let us analyze one specific case to be more explicit. Suppose we want to add a

deformation of the action corresponding to δΞ = (θL − θR)2FaΦa, breaking a combination

of left-right moving supersymmetry. This vertex operator does not satisfy the physical

state condition (2.16). A clear way to see this in terms of the familiar language of chiral

states is that the vertex operator (θL − θR)2Fae
−ρL+ρRΩ+

L(Ω+
R(Φa)) has a single pole with

G+
L and G−

R viz.

G+
L [(θL − θR)2Fae

−ρL+ρRΩ+
L (Ω+

R(Φa))] → 1

z
eρRFaΩ

+
L (Ω+

R(Φa)),

G−
R[(θL − θR)2Fae

−ρL+ρRΩ+
L (Ω+

R(Φa))] → 1

z
e−ρLFaΩ

+
L(Ω+

R(Φa)),

so it fails to be (anti-)chiral. (Note that G+
L [Ω+

L (Ω+
R(Φa))] → 0 and G+

R [Ω+
L (Ω+

R(Φa))] →
0.) To remedy this, one has to remember that one of the effects of fluxes is to generate

torsions [19] and it turns out that at linearized level in the deformation semi-chiral and

non-chiral (depending on the type of flux) operators have to be included in the internal

CFT. These new operators are not physical by themselves either; only the combination is a

consistent deformation of the background. This is the worldsheet counterpart to the target

space result that torsions modify the closure conditions on the forms. A consequence of

this in the hybrid formalism is that the theory does not factorize into two independent

CFTs; space-time and internal superconformal generators are not conserved separately. Of

course, the introduction of fluxes does not add new states in the spectrum implying that

these new semi-chiral and non-chiral vertex operators should not be independent. The

physical operator will have the form

e−ρL+ρRΩ+
L (Ω+

R(δΞ)) + eρRW1 + e−ρLW2, (4.3)

where eρRW1 + e−ρLW2 is a vertex operator representing the effect of torsion with charge

(1,−1) and we are assuming it does not depend on space-time and θ. The (anti-)chirality

conditions are now

0 = G+
L

[
(θL − θR)2Fae

−ρL+ρRΩ+
L (Ω+

R(Φa)) + eρRW1 + e−ρLW2

]
(4.4)

→ 1

z

[
Fae

ρRΩ+
L (Ω+

R(Φa)) + eρRG+
L (W1) + e−ρLG+

L (W2)
]
,

0 = G−
R

[
(θL − θR)2Fae

−ρL+ρRΩ+
L (Ω+

R(Φa)) + eρRW1 + e−ρLW2

]
(4.5)

→ 1

z

[
Fae

−ρLΩ+
L (Ω+

R(Φa)) + e−ρLG+
R (W2) + e+ρRG+

R (W1)
]
,
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whence we obtain four equations determining W1 and W2:

FaΩ
+
L (Ω+

R(Φa)) = −G+
L (W1), G+

R (W1) = 0,

FaΩ
+
L (Ω+

R(Φa)) = −G+
R (W2), G+

L (W2) = 0.

In the large radius limit G+
L acts as dyI∂I and G+

R acts as dyI∂I in our notation and

the above equations are recognizable as the equations relating components of the intrinsic

torsion to the un-deformed forms in the Calabi-Yau [19]. It should be stressed that we are

considering only the first order in Fa. In the case of δΞ, (W1,W2) is a pair of semi-chiral

and semi-anti-chiral vertex operators. If (4.2) is used instead to deform the action, only W2

would be needed and the deformed compactification manifold will not be complex. Since

(W1,W2) are not chiral primaries, it not clear how to construct them in terms of operators

corresponding to geometric objects. Nevertheless, at least in the classical limit, it should

be possible to write a σ-model action including all possible corrections in Fa. This gives an

exact form for G±
L,R and hence exact equations analogous to (4.4) and (4.5) for (W1,W2).

It is interesting to note that the combination e−ρL+ρRΩ+
L (Ω+

R(δΞ)) + eρRW1 + e−ρLW2

resembles the holomorphic “three-form superfield” proposed in [18] and further discussed

in [31]. It is likely that the non-linearized version of this vertex operator should be written

using pure spinors, [32], which arise naturally in the description of generalized compactifi-

cations.9

Let us see how (W1,W2) appear in the full CFT. If the compactification manifold is

an exact Calabi-Yau, the vertex operators Φa and Ψi can be written as

Φa = ωa
IJ

ψ
I

LψJ
R, Ψi = gKIh

iK
J

ψ
I

Lψ
J

R,

where (ψL, ψR) are the usual RNS fermions, ωa
IJ

is a harmonic (1, 1)-form, gIJ is the

Calabi-Yau metric and hiK
J is an element of the Dolbeault cohomology group H1,0(T ) of

the Calabi-Yau. The introduction of fluxes deforms the original manifold and new cubic

operators in the fermions

Υ = uI,JKψI
Lψ

J

RψK
R , Θ = tIJ,KψI

LψJ
Lψ

K

R , (4.6)

Υ = uI,JKψ
I

LψJ
RψK

R , Θ = tIJ,Kψ
I

Lψ
J

LψK
R ,

should be included.10

We must now determine the relation between (uI,JK , uI,JK , tIJ,K , tIJ,K) and the origi-

nal physical deformations in terms of the RR fluxes. From (4.6) we can select the candidates

for (W1,W2) by counting charges and assuming that (Υ,Υ,Θ,Θ) are constant superfields

in space-time;

W1 = Υ = uI,JKψI
Lψ

J

Rψ
K

R , W2 = Θ = tIJ,KψI
LψJ

Lψ
K

R , (4.7)

9We would like to avoid a potential confusion with the pure spinor formalism of Berkovits [6]. However,

although there is currently no explicit relation known between the Berkovits formalism and the pure spinors

mentioned here, it is likely that they are intimately connected via the superconformal extension of the pure

spinor string [5] compactified to four dimensions.
10This choice is the most convenient for the discussion above. As in the case of the original chiral

primaries, the cubic operators can be rotated using (J++

L,R, J−−
L,R).
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have the correct conformal weight. Substituting these into (4.4) we have

G+
L (eρRuI,JKψI

Lψ
J

Rψ
K

R + e−ρLtIJ,KψI
LψJ

Lψ
K

R + (4.8)

+e−ρL+ρR(θL − θR)2Faω̃
a
KMKM

ψM
L ψK

L ψ
K

R ψ
M

R ) → e−ρL

z
(∂M tIJ,K)ψM

L ψI
LψJ

Lψ
K

R +

eρR

z
(∂MuK,MK + Faω̃

a
KMKM

)ψM
L ψK

L ψ
M

R ψ
K

R = 0,

where ω̃a
KMKM

= ΩMK
IΩMK

Jωa
IJ

. Similarly, from the condition (4.5) we obtain

eρR

z
(−∂MuI,JK)ψI

Lψ
M

R ψ
J

Rψ
K

R +
e−ρL

z
(∂M tKM,K + Faω̃

a
KMKM

)ψM
L ψK

L ψ
M

R ψ
K

R = 0. (4.9)

Using ∂ = dyI∂I and ∂ = dyI∂I we can write these equations as

∂t = ∂u = 0

∂u = ∂t = −Faω̃
a

where ω̃a ∈ H2,2 is the Hodge dual of ωa ∈ H1,1 or, equvalently,

d(t − u) = 0 , d(t + u) = −2Faω̃
a.

In the absence of flux Υ and Θ should be identified with (SU(2) rotations of) one of

the original vertex operators Ψi. Note that since the value of Fa is quantized there is

no modulus corresponding to (4.3). In other words, it is a deformation of the σ-model

preserving the full superconformal invariance but there is no massless space-time field

corresponding to it. The next question to be addressed concerns how the presence of this

vertex operator in the action affects the equations of motion for other modulus fields. One

should expect that the equations of motion will show that with appropriate flux all the

initial modulus fields will turn out to be massive.

From the discussion above we see that the correct vertex operators describing the

presence of fluxes in the compactification-dependent sector have the general form

Fcc = e−ρLΓ + e−ρRΛ + e−ρL−ρRΩ+
L(Ω−

R(Ψi))(θ2
Lyi + θ

2
Ryi), (4.10)

Fca = e−ρLΘ + eρRΥ + e−ρL+ρΩ+
L (Ω+

R(Φa))(θ2
LFa + θ2

RF a + θLθRDa),

where Γ = gI,JKψI
LψJ

RψK
R and Λ = lIJ,KψI

LψJ
LψK

R are determined in terms of the fluxes

(yi, yi) and the elements of H1,0(T ). (Fca,Fcc) are the operators corresponding to the

superforms proposed in [18, 31] up to the chiral boson dependence which implements the

correct charges and conformal weights.

Now let us see how the presence of flux affects the vertex operator corresponding to

space-time deformations. Since linearized fluctuations in U can only describe perturbations

satisfying Rµν = 0, the effects of fluxes cannot be seen as coupled equations of Ramond-

Ramond operators and U as in (4.10). One could try to include (4.10) into the action and

re-compute physical state conditions. A more direct way is to compute UV divergences
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coming from interactions of Fca. For example, the composite operator FcaF ca has a UV

divergence

: Fca(z)F ca(z) :=
1

ε2
θα
LθRαθ

α̇

LθRα̇DaDbg
ab + · · · (4.11)

where · · · contains terms with fewer θs, g
ab is the Zamolodchikov metric11 on the moduli

space, and ε is a UV regulator in the OPE

Φa(z)Φ
b
(w) → g

ab

|z − w|2 + ε2
.

This divergence breaks conformal invariance. Because of its θ dependence, (4.11) can

only be cancelled by the vertex operator constructed from U and since (4.10) does not break

four-dimensional Poincaré invariance, this part of U should be independent of x. As was

mentioned in section 2.3, in a more general situation U could be a function on the compact-

ification manifold. At one loop (4.11) will be cancelled by : TLTR U(θL, θR, θL, θR, yI , yJ) :.

This term is one of the many contributions from the integrated vertex operator (2.20). In

a flat ten-dimensional background the divergence coming from this term is zero since it

is proportional to 10U which vanishes for a massless deformation. In the case at hand,

where U is independent of x, we have

: TLTR U(θL, θR, θL, θR, yI , yJ) : + : Fca(z)F ca(z) := (4.12)

1

ε2

(
CY U(θL, θR, θL, θR, yI , yJ) + θα

LθRαθ
α̇

LθRα̇DaDbg
ab

)
+ · · · = 0.

The component θα
LθRαθ

α̇

LθRα̇ is precisely where the space-time metric sits in U (see (3.1))

and equation (4.12) implies the usual space-time warping in flux compactifications.

In (4.12) · · · include other divergent terms that should also be cancelled, and this implies

further corrections to the original background.

To compute superpotentials generated by fluxes in superstring scattering amplitudes

we include (4.10) in the physical vertex operators (2.15) with appropriate SU(2) rotations.

For example, in the case of (4.1), there is a superpotential of the type

W = 3

∫
d4xd2(θL − θR)FaMbMcKabc,

where d2(θL − θR) is the measure for the preserved supersymmetry. Because of the mixing

of (ρL, ρR) and (JL,JR) charges in (4.10) and the zero-mode measure (2.24), the potential

contributions from Θ and Υ do not appear and the presence of flux does not modify the

topological amplitudes as argued by Vafa in [16]. It should be noted, however, that now

Fa is not interpreted as the auxiliary field in Ma, but a component of the physical operator

Fca. To further study the supersymmetry breaking in this case, one can use the superspace

projection technique introduced in section 3.

11This is one of the possible metrics. A second one can be defined as G
+

L (G+

R(Φa))G−
L (G−

R (Φ
b
)) → g

ab

|z−w|4
,

and is the metric of a different section of the moduli space [23].
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5. Conclusions and further directions

In this paper we analyzed the hybrid formalism for supersymmetry-breaking backgrounds.

It was shown how worldsheet techniques can be used to study backgrounds with internal

RR fluxes and a covariant formulation of the Type IIA string on
(
CY3 × S1

)
/Z2 was

constructed. The significant simplification of calculations in the hybrid formalism relative

to the analogous ones in RNS is due to the absence of spin fields in the former. It was

shown how the hybrid formalism can be applied to a much wider class of compactifications

than the original CY3 case; much remains to be done in this direction.

There are many interesting applications that can follow from this work. For example,

the hybrid is suitable for describing intersecting brane models which are currently one of

the possible approaches to string phenomenology. Here the substitution of supercharges in

favor of spin fields simplifies, among other things, the calculation of correlation functions

associated to higher-dimension operators in the effective theory.

In a closely related line of research, one can use the hybrid formalism to study flux

compactifications on Calabi-Yau orientifolds using a generalization of the superspace re-

duction technique of section 3. For example, in the Type IIA case, the inclusion of O6

planes projects out half of the spectrum by a superspace involution switching θL ↔ θR in

the case of chiral fields and θL ↔ θR in the case of twisted-chiral fields. Similarly to the

analysis of section 4.1, the surviving half-supersymmetric Nd = 14 superfields are correlated

with the induced projection on cohomology.

Many tools have been developed to study strings on Calabi-Yau spaces, like Gepner

models [33], linear σ-models [34], and topological strings [35]. The presence of fluxes

modifies the compactification CFT and such tools are no longer suitable. Since the main

ingredient of these techniques is the N = 2 supersymmetry algebra on the worldsheet

and as we have shown that this symmetry is preserved, it is possible that there exist

generalizations of these methods. For example, the ĉ = 5 formalism [17] has a linearly

realized supersymmetry algebra on the worldsheet and one can add the space-time sector

and a linear σ-model describing the internal space. One then searches for actions where

the two algebras do not decouple. This would correspond to a generalized compactifica-

tion. Another possibility is that topological strings on generalized complex spaces recently

considered by Pestun in [36] will play an important role in future studies.

Quantum corrections, both string loop and α′, should also be considered. Loop ampli-

tudes of compactification-dependent states could be calculated in a supersymmetric way as

in [25, 37]. In order to pursue this, one has to understand better the correlation functions

of the time-like chiral boson ρ. To go beyond the linearized level, a general hybrid σ-model

action with fluxes and warping can be constructed along the lines of [22]. This σ-model

action is equivalent to the action of the uncompactified ten-dimensional superstring using

d = 4 N = 2 notation. This would allow us to compute α′ corrections and consistency

conditions for backgrounds with warping and internal RR flux using, for example, the beta

function method. We hope to give simple examples of the hybrid formlism in this type of

backgrounds such as Dp-brane solutions in the future.
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A. Hybrid compactified on S1: supersymmetric operators in d = 3

In this appendix we write, in a convenient way, the hybrid variables for the compactification

Type II strings on CY3×S1. With the definitions of section 3, the supersymmetric operators

are

Παβ
L = ∂Lxαβ + θ

(α
L ∂Lθ

β)
L + θ

(α
L ∂Lθ

β)
L , Z = ∂Lx2 + θα

L∂LθLα + θ
α

L∂LθLα (A.1)

dLα = pLα + θ
β

L∂Lxαβ − 1

2
θ
2
∂Lθα +

1

4
θLα∂Lθ

2
+ ∂Lx2θα,

dLα = pLα + θβ
L∂Lxαβ − 1

2
θ2
L∂LθLα +

1

4
θLα∂Lθ

2
L + ∂Lx2θLα,

where Z is a supersymmetric extension of the central charge operator ∂Lx2. The algebra

of these operators is

dLαdLβ → 1

z − w
(ΠLαβ + εαβZ), dLαdLβ → 0, dLαdLβ → 0, (A.2)

dLαΠLβγ → 1

z − w
εα(β∂Lθγ), dLαΠLβγ → 1

z − w
εα(β∂LθLγ),

dLαZ → 1

z − w
∂LθLα, dLαZ → 1

z − w
∂LθLα

With these definitions, the superconformal algebra is

T =
1

2
ΠLαβΠαβ

L +
1

2
Z2

L + dLα∂Lθα
L + dLα∂Lθ

α

L + TCY , (A.3)

G+ = eρLd2 + G+
CY , G− = e−ρLd

2
+ G−

CY , J = −∂LρL + JCY .

The spectrum is now characterized by the eigenvalues of the central charge operators if we

compactify x2 on a circle. Since there is left- and right-moving central charge, superfields

are classified by two integers (n,m) where n is the Kaluza-Klein momentum and m is the

winding number.

Since we are breaking the full SO(1,3) covariance, we can define new super-covariant

operators like :dd :, d∂Lθ, and d∂Lθ. The algebra that is generated by these operators is a

higher-spin algebra. It is likely that after breaking space-time and worldsheet supersymme-

try these operators are related to the G2 holonomy conformal algebra found by Shatashvili

and Vafa [38] for a more general G2 manifold than the special case considered here.
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